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Introduction

Blind Audio Source Separation (BASS) for music
and Music Information Retrieval (MIR): 
→ Inter-related Fields

Polyphonic music recordings: 
a BASS/MIR hybrid approach to main melody 
transcription/separation

Applications
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Introduction: link between BASS/MIR

BASS
Approaches

• Based on models
• Data-driven
• “Low-level”
  (signal level)

MIR
Approaches

• Perceptually 
  motivated

• Knowledge driven
• “High-level” 

   (semantic level)

Separated
Musical Sources

• Transcription
• Indexing

“Breaking”
music into
“atomic”
elements
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Introduction: Bridging BASS/MIR “gap”

 Improving BASS with MIR, and MIR with BASS
2 instruments transcription/separation example:

Hybrid approaches:
• E. Vincent, “Musical Source Separation Using Time-

Frequency Source Priors”, 
IEEE Transactions on Audio, Speech and Language 
Processing, vol. 14, No 1

• Singing voice signals?

BASS

MIR

MIR
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Introduction: Main Melody Transcription, 
     Main Instrument Separation

Definitions: 
• [MIREX] “Audio Melody Extraction”: extract the main 

melody from polyphonic audio signals.
• [Paiva2007]: “[The Main] Melody is the dominant 

individual pitched line in a musical ensemble”.
Addressing 2 tasks:

• Main Melody Transcription: identify and transcribe 
the sequence of fundamental frequencies played by 
the main instrument in a polyphonic music signal 
(mono or stereo),

• Main Instrument/Accompaniment Separation: 
separate the instrument playing the main melody from 
the other accompaniment instruments.
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Introduction: Applications

Transcribed Melody 
• Indexing large music database,
• Musical transcription into “human readable” score,
• ...

Separating the Main Instrument from the 
Accompaniment:
• Generate accompaniments for solo performers
• Pre-Processing for MIR applications (chord 

detection, instrument classification, etc.)
• ...
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Introduction: Presentation Outline

Signal Models
Source/Filter model for the main instrument, NMF for 
the other instruments; estimation algorithm for the 
corresponding parameters,

Melody transcription
Viterbi smoothing of the melody sequence,

Main Instrument/Accompaniment Separation (also 
referred to as Solo/Accompaniment Separation)
Wiener filters to estimate the separated sources,

Conclusion/Discussions
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Introduction: System Outline (ICASSP09)
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Introduction: Contributors at 
                       Telecom ParisTech

Supervisors:
• Bertrand DAVID,
• Gaël RICHARD.

Team members:
• Nancy BERTIN, 
• Cédric FEVOTTE, 
• Alexey OZEROV,
• And all the other Audiosig project team 

members...
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Signal Models

Audio signals: 
• Time-Frequency Representation, 
• Statistical modeling.

Mixture model
Source/Filter model for the main instrument

• Motivations
• Characterizing the main melody instrument

NMF-based model for the accompaniment
• Decomposition on limited dictionary
• Link between NMF and our framework

Parameter estimation
• NMF-like algorithm: multiplicative gradient approach
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Signal Models:  Time-Frequency                    
                           Representation 

Digital audio: waveform 

Time-frequency 
representation:
• Evolution of 

frequency content,
• Human auditory 

system.

Short-Time Fourier 
Transform (STFT):
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Signal Models: Complex Proper Gaussians

Model for complex spectrum:

 Independence across time and frequencies:

For stationary processes,               power 
spectrum density (PSD) of 

Variance/PSD matrix          s.t.
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Signal Models: Mixture Model

Mixture    =  Solo     +   Accompaniment
                    Voice                   Music

Each signal centered-Gaussian, with resp. 
variances : 

 Independence between V and M:

Source/Filter model
NMF decomposition 
of the power spectrum
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Signal Models: Source/Filter Model for the   
                          Main Instrument

Motivations: 
• Singing voice often 

main instrument,
• Source/Filter widely 

used, suitable for wide 
range of other 
instruments,

• Separately modeling 
pitched aspects (source) 
from timbre aspects 
(filter).

Human vocal tract (from Wikipedia)
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Signal Models:  Source/Filter Principle

(Vocal Tract)
Filter

(Glottal)
Source

Frequency (Hz) Frequency (Hz)

Frequency (Hz)
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Signal Models: Source/Filter Variability

Time (s)
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A Vocal Signal (by Tamy - from MTG MASS database)
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Signal Models: Source/Filter Variability

Human singer: 
• Independent evolution of pitches     and filters 

(vowel),
• Continuous pitch variations,
• Limited set of vowels (smooth filters),
• Unvoiced parts...

Proposed Model for Main Instrument:
• Discrete range of possible      for voiced source 

component, log-spaced s.t. 96        per octave,
• Limited number of “smooth” filters,
• Unvoiced source component integrated later in 

the estimation process.
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Signal Models: Source Component (1/2)

Voiced source component: 
• KLGLOTT88 (Glottal source) model, [Klatt90]: spectral 

comb dictionary         ,             “notes”,
• Freq.      , Pitch       : power spectrum                    ,
• Pitch      , Frame     : activation coefficients                     ,
• Nonnegative combination of the element of the dictionary

Unvoiced source
• In dictionary        , “unvoiced” component such that:

 
• Activation coefficient estimated only after filter part.
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Signal Models: Source Component (2/2)
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Signal Models: Filter Component (1/2)

Filter component:
• Dictionary of      filters        ,
• Freq.    , Filter number      : freq. response                  ,
• Filter    , Frame      : activation                     ,
• Combination:

 
Filter smoothness: 

• Decomposition on spectral dictionary of       smooth 
“atomic” elements        , activations         ,

•

That is to say:
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Signal Models: Filter Component (2/2)
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Signal Models: Source/Filter Summary

Source contribution:

Filter contribution:

Main Instrument contribution to the mixture power 
spectrum:
 

Parameters:
• Fixed parameters: dictionaries          and 
• To estimate: 
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Signal Models: Mixture Model

Mixture    =  Solo     +   Accompaniment
                    Voice                   Music

Each signal centered-Gaussian, with resp. 
variances : 

 Independence between V and M:

Source/Filter model
NMF decomposition 
of the power spectrum
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Signal Models: Accompaniment (1/2)

Accompaniment/Background Music component: 
• Power spectrum dictionary         , with       elements,
• Activation matrix          ,
• Nonnegative combination of the element of the 

dictionary

Equivalence between [Fevotte09]:
• Maximum Likelihood (ML) estimation of         and        

with 
• NMF minimizing the Itakura-Saito divergence between   

              and the matrix product
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Signal Models: Accompaniment (2/2)
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Signal Models: Mixture model summary

Mixture variance/PSD matrix: 
• Main Instrument:

• Accompaniment:

• Mixture:

Parameters:
• Fixed Parameters:

• To be estimated:
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Signal Models: Parameter Estimation

  Maximum Likelihood (ML) estimation: 
• Log-likelihood of the observations       :

• With the parameterized variance:

NMF inspired algorithm:
• Itakura-Saito divergence between           and
• Multiplicative updates for parameter estimation



 page 32 direction ou services

Automatic Transcription and 
Separation of the Main Melody 
from Polyphonic Music Signals

1.Introduction
2.Signal Models
3.Transcription of the Melody
4.“Solo/Accompaniment” Separation



 page 33 direction ou services

Transcription of the Melody

Application definition and scope

Model to estimate a smooth melody

Dynamic Programming (Viterbi algorithm)
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Transcription: Definition and scope

Definition:
• “[The Main] Melody is the dominant individual pitched 

line in a musical ensemble.” [Paiva2007],
• Transcribe the fundamental frequencies played by the 

predominant instrument in a polyphonic music 
recording.

Scope:
• “low-level” transcription: sequence of pitches,
• Various genres and musical ensembles (MIREX 2004 

and 2005 database),
• Participation to an international evaluation campaign: 

MIREX 2008 (“audio melody extraction”)
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Transcription: Modeling a Smooth Melody

Assumptions on the melody line           :
• Smooth,
• Predominant as concerns the energy,
• Realistic melody line: trade-off between the 

smoothness and the energy of the line.
Hidden Markov Model :
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Transcription: Melody Tracking

Maximum Likelihood estimation:
•
•                                                   , 

concerns the energy:
• Likelihood of the sequence of pitches:

 
where we chose:

Viterbi Tracking algorithm 
• Dynamic Programming,
• Modified to deal with silences in the main melody.
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Transcription: Melody Tracking

Time (s)Time (s)

Melody line

Time (s)

Time (s)
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Transcription: Results
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Solo/Accompaniment Separation

Definition

Estimation of the separated signals

Results

Applications and Extensions
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Solo/Accompaniment Separation

Definition:
• “Solo”: the track played by the main instrument, with 

the main melody,
• “Accompaniment”: the remaining other background 

instruments.
• Separate these two contributions and obtain their 

images.
MIR-aided approach:

• First step: melody tracking,
• Second step: re-estimation of the parameters 

knowing  the melody,
• ( Third step: re-estimation including unvoiced parts )



 page 42 direction ou services

Solo/Accompaniment Separation
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Solo/Accompaniment Separation

Time (s)

Time (s)
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Solo/Accompaniment Separation: Results

 ICASSP 2009:
• + 8 dB SDR for the estimated singing voice,
• + 2 dB SDR for the accompaniment extraction.

SiSEC “Professionally produced music recordings” (
http://sisec.wiki.irisa.fr/)
• Interesting result: on the excerpt by “Tamy”, 

flute+guitar, best results for algorithms who first 
estimate the melody.

Some sound examples on:
• http://perso.enst.fr/durrieu/en/results_en.html
• http://perso.enst.fr/durrieu/en/icassp09/

Some other sounds here...

http://sisec.wiki.irisa.fr/
http://perso.enst.fr/durrieu/en/results_en.html
http://perso.enst.fr/durrieu/en/icassp09/
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Solo/Accompaniment Separation: 
Applications/Extensions

MIR applications (MIREX 2008):
• Pre-processing for multipitch estimation, 
• Accompaniment enhancement for Chord detection,

Other potential extensions:
• Stereophonic signals: submission to Eusipco 2009,
• Enhancing discrimination of main instrument by 

classification methods,
• Adding constraints (priors) to the parameters, 

avoiding several steps to achieve separation.



 page 46 direction ou services

Conclusions/Discussions

Conclusions:
• Hybrid Framework BASS/MIR,
• State-of-the-art for “audio melody transcription” 

(MIREX08) and “solo/accompaniment” separation 
(SiSEC),

• Techniques suitable for other applications: multipitch, 
background music enhancement, indexing, etc.

Extensions:
• Better formalism for multichannel signals,
• Transcription into musical notes/musical score.
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Conclusions/Discussions

Conclusions:
• Hybrid Framework BASS/MIR,
• State-of-the-art for “audio melody transcription” 

(MIREX08) and “solo/accompaniment” separation 
(SiSEC),

• Techniques suitable for other applications: multipitch, 
background music enhancement, indexing, etc.

Extensions:
• Better formalism for multichannel signals,
• Transcription into musical notes/musical score.

Any questions?
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