

Jean-Louis Durrieu, PhD candidate TSI Department, Telecom ParisTech http://perso.telecom-paristech.fr/durrieu/en/

07/09/09

1.Introduction
 2.Signal Models
 3.Transcription of the Melody
 4."Solo/Accompaniment" Separation

- **1.Introduction**
- **2.Signal Models**
- 3. Transcription of the Melody
- 4. "Solo/Accompaniment" Separation

- Blind Audio Source Separation (BASS) for music and Music Information Retrieval (MIR):
 Inter-related Fields
- Polyphonic music recordings:
 a BASS/MIR hybrid approach to main melody transcription/separation
- Applications

a 梁 新 Introduction: link between BASS/MIR MIR BASS **Approaches Approaches** Perceptually Based on models motivated Data-driven Knowledge driven "Low-level" "High-level" (signal level) (semantic level) "Breaking" music into "atomic" elements **Separated** Transcription **Musical Sources** Indexing

Base Introduction: Bridging BASS/MIR "gap"

Improving BASS with MIR, and MIR with BASS

2 instruments transcription/separation example:

- E. Vincent, "Musical Source Separation Using Time-Frequency Source Priors", IEEE Transactions on Audio, Speech and Language Processing, vol. 14, No 1
- Singing voice signals?

Introduction: Main Melody Transcription, Main Instrument Separation

Definitions:

- [MIREX] "Audio Melody Extraction": *extract the main melody from polyphonic audio signals.*
- [Paiva2007]: "[The Main] Melody is the dominant individual pitched line in a musical ensemble".

Addressing 2 tasks:

- Main Melody Transcription: identify and transcribe the sequence of fundamental frequencies played by the main instrument in a polyphonic music signal (mono or stereo),
- Main Instrument/Accompaniment Separation: separate the instrument playing the main melody from the other accompaniment instruments.

副多数 Introduction: Applications

Transcribed Melody

- Indexing large music database,
- Musical transcription into "human readable" score,
- ...
- Separating the Main Instrument from the Accompaniment:
 - Generate accompaniments for solo performers
 - **Pre-Processing** for MIR applications (chord detection, instrument classification, etc.)

• ..

副 Marcelline Introduction: Presentation Outline

Signal Models

Source/Filter model for the main instrument, **NMF** for the other instruments; **estimation** algorithm for the corresponding parameters,

Melody transcription Viterbi smoothing of the melody sequence,

Main Instrument/Accompaniment Separation (also referred to as Solo/Accompaniment Separation)
 Wiener filters to estimate the separated sources,

Conclusion/Discussions

Introduction: Contributors at Telecom ParisTech

Supervisors:

- Bertrand DAVID,
- Gaël RICHARD.
- Team members:
 - Nancy BERTIN,
 - Cédric FEVOTTE,
 - Alexey OZEROV,
 - And all the other Audiosig project team members...

- **1.Introduction**
- **2.Signal Models**
- 3. Transcription of the Melody
- 4. "Solo/Accompaniment" Separation

Audio signals:

- Time-Frequency Representation,
- Statistical modeling.
- Mixture model
- Source/Filter model for the main instrument
 - Motivations
 - Characterizing the main melody instrument
- NMF-based model for the accompaniment
 - **Decomposition** on limited dictionary
 - Link between **NMF** and our framework

Parameter estimation

• NMF-like algorithm: multiplicative gradient approach

Signal Models: Time-Frequency Representation

Digital audio: waveform

- Time-frequency representation:
 - Evolution of frequency content,
 - Human auditory system.
- Short-Time Fourier Transform (STFT):

 $X_n(f)$

Signal Models: Complex Proper Gaussians

• Model for complex spectrum: $X_n(f) \sim \mathcal{N}_c(0, S_{X_n}(f))$

$$N_c(X_n(f); 0, S_{X_n}(f)) = \frac{|X_n(f)|}{\pi S_{X_n}(f)} \exp\left(-\frac{|X_n(f)|^2}{S_{X_n}(f)}\right)$$

Independence across time and frequencies:

$$p(X) = \sum_{f,n} N_c(X_n(f); 0, S_{X_n}(f))$$

For stationary processes, S_{X_n} = power spectrum density (PSD) of X_n
 Variance/PSD matrix S_X s.t. S_X(f, n) = S_{X_n}(f)

Signal Models: Mixture Model

Signal Models: Mixture Model

Signal Models: Source/Filter Model for the Main Instrument

Motivations:

- Singing voice often main instrument,
- **Source/Filter** widely used, suitable for wide range of other instruments,
- Separately modeling pitched aspects (source) from timbre aspects (filter).

Human vocal tract (from Wikipedia)

Signal Models: Source/Filter Principle (Glottal) (Vocal Tract) $V_{k,f_0}(f) =$ Source Filter $w_k(f)E_{f_0}(f)$ $w_k(f)$ $E_{f_0}(f)$ -100 -20 -30 -50 -40 -50 -1001000 2000 3000 4000 0 1000 2000 3000 4000 0 Frequency (Hz) Frequency (Hz) 0 -50 -100-150 Frequency (Hz) 1000 3000 0 4000

Signal Models: Source/Filter Variability

A Vocal Signal (by *Tamy* - from MTG MASS database)

Signal Models: Source/Filter Variability

Human singer:

- Independent evolution of pitches f_0 and filters (vowel),
- Continuous pitch variations,
- Limited set of vowels (smooth filters),
- Unvoiced parts...
- Proposed Model for Main Instrument:
 - Discrete range of possible f_0 for **voiced** source component, log-spaced s.t. 96 f_0 per octave,
 - Limited number of "smooth" filters,
 - **Unvoiced** source component integrated **later** in the estimation process.

Signal Models: Source Component (1/2)

■ Voiced source component:

- KLGLOTT88 (Glottal source) model, [Klatt90]: spectral comb dictionary W_{F_0} , N_{F_0} "notes",
- Freq. f , Pitch f_0 : power spectrum $W_{F_0}(f,f_0)$,
- Pitch f_0 , Frame n: activation coefficients $H_{F_0}(f_0,n)$,
- Nonnegative combination of the element of the dictionary

$$S_{F_0}(f,n) = \sum_{f_0} W_{F_0}(f,f_0) H_{F_0}(f_0,n)$$

Unvoiced source

- In dictionary W_{F_0} , "unvoiced" component such that: $W_{F_0}(f, f_0) = 1, \forall f,$
- Activation coefficient estimated only after filter part.

Signal Models: Filter Component (1/2)

Filter component:

- Dictionary of K filters W_{Φ} ,
- Freq. f , Filter number $\,k\,$: freq. response $\,W_{\Phi}(f,k)$,
- Filter k , Frame $\,n\,$: activation $\,H_{\Phi}(k,n)\,$,
- Combination:

$$S_{\Phi} = W_{\Phi} H_{\Phi}$$

Filter smoothness:

- Decomposition on spectral dictionary of P smooth "atomic" elements W_{Γ} , activations $~H_{\Gamma}$,

•
$$W_{\Phi}(f,k) = \sum_{n} W_{\Gamma}(f,p) H_{\Gamma}(p,k), \forall k$$

That is to say: ${}^{p}W_{\Phi} = W_{\Gamma}H_{\Gamma}$

梁翻 Signal Models: Filter Component (2/2) 0 filter 10 -50 6 Q -100 20 5 2 з 4 Time (s) 30 $\overset{2}{H}_{\Gamma}^{4}$ H_{Φ} 5000 5000 5000 0 (Hz) 4000 4000 Hz 2000 1000 Erequency (Hz) 3000 2000 1000 4000 4000 -20 Frequency (Hz) 3000 -402000 -60 1000 -80 0 0 -100 0 $\overset{1}{S}_{\Phi} \stackrel{2}{=} \overset{3}{W}_{\Gamma}^{3} H_{\Gamma}^{4} H_{\Phi}$ 2468 20 5 10 30 $W_{\Phi} = W_{\Gamma} H_{\Gamma}$ W_{Γ} ELECO

page 25

direction ou services

Signal Models: Source/Filter Summary

Source contribution:

$$S_{F_0} = W_{F_0} H_{F_0}$$

Filter contribution:

$$S_{\Phi} = W_{\Phi}H_{\Phi} = W_{\Gamma}H_{\Gamma}H_{\Phi}$$

Main Instrument contribution to the mixture power spectrum:

$$S_V = S_{\Phi} \cdot * S_{F_0} = (W_{\Gamma} H_{\Gamma} H_{\Phi}) \cdot * (W_{F_0} H_{F_0})$$

Parameters:

- Fixed parameters: dictionaries W_{F_0} and W_{Γ}
- To estimate: $\{H_{\Gamma}, H_{\Phi}, H_{F_0}\}$

Signal Models: Mixture Model

Signal Models: Accompaniment (1/2)

Accompaniment/Background Music component:

- Power spectrum dictionary W_M , with R elements,
- Activation matrix H_M ,
- Nonnegative combination of the element of the dictionary

 $S_M = W_M H_M$

Equivalence between [Fevotte09]:

- Maximum Likelihood (ML) estimation of W_M and H_M with $M \sim \mathcal{N}_c(0, W_M H_M)$
- NMF minimizing the Itakura-Saito divergence between $|{\cal M}|^2\,$ and the matrix product $\,W_M H_M\,$

page 29 direction ou services

TELECOM ParisTech

Signal Models: Mixture model summary

Mixture variance/PSD matrix:

- Main Instrument: $S_V = S_{\Phi} \cdot * S_{F_0} = (W_{\Gamma} H_{\Gamma} H_{\Phi}) \cdot * (W_{F_0} H_{F_0})$
- Accompaniment:

$$S_M = W_M H_M$$

• Mixture: $S_X = (W_{\Gamma} H_{\Gamma} H_{\Phi}) \cdot * (W_{F_0} H_{F_0}) + W_M H_M$

Parameters:

- Fixed Parameters: $\{W_{\Gamma}, W_{F_0}\}$
- To be estimated: $\{H_{\Gamma}, H_{\Phi}, H_{F_0}, W_M, H_M\}$

Signal Models: Parameter Estimation

Maximum Likelihood (ML) estimation:

- Log-likelihood of the observations \boldsymbol{X} :

$$\log p(X) = \sum_{f_n} -\log S_{X_n}(f) - \frac{|X_n(f)|^2}{S_{X_n}(f)} + cst$$

• With the parameterized variance:

 $S_X = (W_{\Gamma} H_{\Gamma} H_{\Phi}) \cdot (W_{F_0} H_{F_0}) + W_M H_M$

NMF inspired algorithm:

- Itakura-Saito divergence between $|X|^2$ and S_X
- Multiplicative updates for parameter estimation

Introduction
 Signal Models
 Transcription of the Melody
 "Solo/Accompaniment" Separation

- Application definition and scope
- **Model** to estimate a smooth melody
- **Dynamic Programming** (Viterbi algorithm)

一多题 Transcription: Definition and scope

Definition:

- "[The Main] Melody is the dominant individual pitched line in a musical ensemble." [Paiva2007],
- Transcribe the fundamental frequencies played by the predominant instrument in a polyphonic music recording.

Scope:

- "low-level" transcription: sequence of pitches,
- Various genres and musical ensembles (MIREX 2004 and 2005 database),
- Participation to an international evaluation campaign: MIREX 2008 ("audio melody extraction")

Transcription: Modeling a Smooth Melody

Assumptions on the melody line $F_0(n)$:

- Smooth,
- Predominant as concerns the energy,
- Realistic melody line: **trade-off** between the smoothness and the energy of the line.

Hidden Markov Model :

Transcription: Melody Tracking Trac

Maximum Likelihood estimation:

- $p(F_0|X) \propto p(X|F_0)p(F_0)$
- $p(X|F_0) = \prod p(X_n|F_0(n))$,

concerns the energy: $p(X_n|f_0) \propto H_{F_0}(f_0, n)$

• Likelihood of the sequence of pitches: $p(F_0) = p(F_0(1)) \prod p(F_0(n+1)|F_0(n))$

where we chose: $p(f_2|f_1) \propto \exp(\alpha |\log_2 \frac{f_2}{f_1}|)$

■ Viterbi Tracking algorithm

- Dynamic Programming,
- Modified to deal with silences in the main melody.

	ranscription: Results	Audio Melody Extraction (ADC 2004 Dataset)		
		Rank	Participant	Accuracy
Accuracy =	$\frac{\text{#correctly estimated frames}}{\text{#frames}}$	1	Cancela, P.	85.1%
		2	Durrieu, Richard & David (imm)	81.5%
		3	Ryynänen & Klapuri	78.8%
		4	Rao & Rao	70.1%
		5	Cao, Li, Liu & Yan (2)	68.0%
		6	Durrieu, Richard & David (gmm)	59.6%
		7	Cao, Li, Liu & Yan (1)	50.2%
			-	

Audio Melody Extraction (MIREX 2005 Dataset)

Rank	Participant	Accuracy	
1	Cancela, P.	69.8%	
2	Durrieu, Richard & David (imm)	66.0%	
3	Rao & Rao	64.9%	
4	Ryynänen & Klapuri	63.5%	
5	Cao, Li, Liu & Yan (2)	61.4%	
6	Durrieu, Richard & David (gmm)	52.2%	
7	Cao, Li, Liu & Yan (1)	48.9%	

Audio Melody Extraction (MIREX 2008 Dataset)

Rank	Participant	Accuracy	
1	Durrieu, Richard & David (gmm)	76.0%	
2	Ryynänen & Klapuri	75.3%	
3	Durrieu, Richard & David (imm)	75.0%	
4	Cancela, P.	73.3%	
5	Rao & Rao	66.7%	
6	Cao, Li, Liu & Yan (1)	51.4%	
7	Cao, Li, Liu & Yan (2)	49.7%	

- **1.Introduction**
- **2.Signal Models**
- 3. Transcription of the Melody
- 4. "Solo/Accompaniment" Separation

Definition

Estimation of the separated signals

Results

■ Applications and Extensions

Solo/Accompaniment Separation

Definition:

- "Solo": the track played by the main instrument, with the main melody,
- "Accompaniment": the remaining other background instruments.
- Separate these two contributions and obtain their images.
- MIR-aided approach:
 - First step: melody tracking,
 - Second step: re-estimation of the parameters **knowing the melody**,
 - (Third step: re-estimation including unvoiced parts)

Solo/Accompaniment Separation

ELECO

Solo/Accompaniment Separation H_{F_0}

Solo/Accompaniment Separation: Results

■ ICASSP 2009:

- + 8 dB SDR for the estimated singing voice,
- + 2 dB SDR for the accompaniment extraction.
- SiSEC "Professionally produced music recordings" (http://sisec.wiki.irisa.fr/)
 - Interesting result: on the excerpt by "Tamy", flute+guitar, best results for algorithms who first estimate the melody.

Some sound examples on:

- http://perso.enst.fr/durrieu/en/results_en.html
- http://perso.enst.fr/durrieu/en/icassp09/

Some other sounds here...

Solo/Accompaniment Separation: Applications/Extensions

- MIR applications (MIREX 2008):
 - Pre-processing for multipitch estimation,
 - Accompaniment enhancement for Chord detection,
- Other potential extensions:
 - Stereophonic signals: submission to Eusipco 2009,
 - Enhancing **discrimination of main instrument** by classification methods,
 - Adding **constraints** (*priors*) to the parameters, avoiding several steps to achieve separation.

Conclusions/Discussions

Conclusions:

- Hybrid Framework BASS/MIR,
- **State-of-the-art** for "audio melody transcription" (MIREX08) and "solo/accompaniment" separation (SiSEC),
- Techniques suitable for other applications: multipitch, background music enhancement, indexing, etc.

Extensions:

- Better formalism for multichannel signals,
- Transcription into musical notes/musical score.

Conclusions/Discussions

Conclusions:

- Hybrid Framework BASS/MIR,
- **State-of-the-art** for "audio melody transcription" (MIREX08) and "solo/accompaniment" separation (SiSEC),
- Techniques suitable for other applications: multipitch, background music enhancement, indexing, etc.

Extensions:

- Better formalism for multichannel signals,
- Transcription into musical notes/musical score.

Any questions?

