SINGLE SENSOR SINGER/MUSIC SEPARATION USING A SOURCE/FILTER MODEL OF THE SINGER VOICE

Jean-Louis Durrieu, Gaël Richard, Bertrand David TELECOM ParisTech / CNRS LTCI - 46, rue Barrault - 75634 Paris Cedex 13 - France - e-mail: durrieu@enst.fr

Introduction • Single-sensor singer/music separation: separating the singer voice from the background polyphonic music on audio signals;

• **Proposed method**: applying a source/filter model to the vocal part and estimating its sequence of fundamental frequencies.

SIGNAL MODEL

SYSTEM OUTLINE

- 1. ML estimation of a_r , a_{f_0} , σ_k , a_r , σ_r : multiplicative gradient approach,
- 2. Melody line $F_0(t)$ inference: Viterbi smoothing on $a_{f_0}(t)$ [1]
- 3. Re-estimation of the parameters: ML initialized with modified amplitude glottal source coefficients ã_{f0}(t) such that ∀t, ã_{f0}(t) = a_{f0}(t), if f₀ = F₀(t) and 0 otherwise.
 4. Computation of the separated signals ŷ and ŵ: Wiener filters and Overlap-Add.

Assumptions on the signal:

- 2 sources: singer voice v and background music m, observed signal x such that: x = v + m,
- Wide sense (local) stationarity: analysis based on the short time Fourier transform (STFT) X,
 Proper Gaussian centered random variables: Y ~ N_c(0, σ_Y)

Source/filter singer voice model

Source/Filter model for the voice:

- Dictionary of fixed glottal source PSDs σ_{f_0} (fig. 1),
- -KLGLOTT model: spectral "combs"
- -Fundamental frequencies between 100 and 800 Hz, 48 notes per octaves, $N_{\text{notes}} = 145$ combs,
- -No model for unvoiced part of singer signal,

 $-f_0 \in [1, N_{\text{notes}}].$

- Dictionary of vocal tract filters σ_k (fig. 2),
- -Each σ_k characteristic of 1 vowel (in theory),
- -K = 9 filters to be estimated, $k \in [1, K]$,
- -No constraints on estimation of $\sigma_k \rightarrow$ not accurate.

RESULTS BSS EVAL criteria

• **Different contributions** in separated signals:

$$\hat{v} = \underbrace{\alpha_v v}_{s_{target}} + \underbrace{\beta_m m}_{e_{interference}} + e_{artefact}$$

• Normalized criteria computed from Sourceto-Distortion/Interference/Artifact-Ratio (SDR/SIR/SAR):

$$SDR = 20 \log_{10} \left(\frac{||s_{target}||}{||e_{interference} + e_{artefact}||} \right)$$
$$SIR = 20 \log_{10} \left(\frac{||s_{target}||}{||e_{interference}||} \right)$$
$$SAR = 20 \log_{10} \left(\frac{||s_{target} + e_{interference}||}{||e_{artefact}||} \right)$$

• Resulting prototype **PSD of the voice** at frequency bin *f*, for a given source/filter couple (k, f_0) (fig. 3): $\sigma_k(f) \times \sigma_{f_0}(f)$

Instantaneous Mixture Model (IMM):

- $a_k(t)$ and $a_{f_0}(t)$ amplitude coefficients for filter k and source f_0 ,
- Each couple (k, f_0) always "active".

fig. 4 Frame of a singer "chirp" on polyphonic music: advantage of multiple-source model

Background music model

Instantaneous mixture of R Gaussian indepen-

Mixture signal.

-50

-100

-150

Instantaneous mixture of the two original

Synthetic data

Synthetized audio from 200 MIDI files, melody played by an oboe:

	\hat{v}			\hat{m}		
	SDR	SIR	SAR	SDR	SIR	SAR
1st est.	10.04	24.34	8.76	7.51	15.48	12.45
2d est.	12.92	25.91	11.56	10.38	25.82	14.06

Real data .

10 "pop" songs, with/without vocal/non-vocal segmentation [2]

	\hat{v}			\hat{m}					
	SDR	SIR	SAR	SDR	SIR	SAR			
no vocal/non-vocal segmentation:									
1st est.	3.73	12.08	0.39	0.7	5.9	9.87			
2d est.	6.42	14.82	2.37	1.58	12.78	8.44			
manual v/n-v segmentation:									
1st est.	6.98	22.03	1.34	3.13	6.08	13.92			
2d est.	10.71	25.01	4.93	5.66	13.96	12.81			

$$V(f,t) \sim \mathcal{N}_{c}(0, \underbrace{\sum_{k} a_{k}(t)\sigma_{k}(f)}_{V_{K}(f,t)} \times \underbrace{\sum_{f_{0}} a_{f_{0}}(t)\sigma_{f_{0}}(f)}_{V_{F_{0}}(f,t)})$$

1000

2000

fig. 3 - (red) $\sigma_k \times \sigma_{f_0}$, (dotted line) σ_k (dB)

3000

4000

dent sources, with variances σ_r :

sources: $X = V + M \Longrightarrow$

 $X(f,t) \sim \mathcal{N}_c(0, D(f,t)) \text{ with:}$ $D(f,t) = V_K(f,t) \times V_{F_0}(f,t) + D_R(f,t)$

Conclusions
and
Perspectives• Results
• IMM dra
• Bayesia
ularization

• Results at the state of the art, with good perceptual results,
• IMM drawbacks balanced by re-estimation of parameters,
• Bayesian framework allowing model refinements: temporal and spectral regularization of the parameters, e.g. ARMA models on σ_k, HMM on a_{f0}(t) etc.

Acoustics'08, Paris, June 29 - July 4, 2008

[1] J.-L. Durrieu, G. Richard, and B. David. Singer melody extraction in polyphonic signals using source separation methods. *ICASSP*, 2008.
[2] A. Ozerov, P. Philippe, F. Bimbot, and R. Gribonval. Adaptation of Bayesian Models for Single-Channel Source Separation and its Application to Voice/Music Separation in Popular Songs. *IEEE Trans. on ASLP*, 2007.